Two-Color Quantum Correlation between Down-Conversion Beams at 1.5 and 3.3 μm from a Singly Resonant Optical Parametric Oscillator

Author:

Nie Dandan,Feng Jinxia,Li Yuanji,Zhang Kuanshou

Abstract

We demonstrated a two-color quantum correlation between the down-conversion beams with a telecommunication wavelength at 1.5 μm and mid-infrared wavelength at 3.3 μm generated by a singly resonant optical parametric oscillator (SRO) operated above the pump threshold with a magnesium-oxide doped periodically-poled lithium niobate crystal in the cavity. A maximum of 1.8 dB noise reduction of the intensity difference of the twin beams was measured at the analysis frequency of 5 MHz. Based on a theoretical model for the quantum correlation between the twin beams given by a semi-classical approach, the influence of the analysis frequency and pump parameter on the quantum correlation between the twin beams was discussed theoretically and experimentally. The quantum correlation between the twin beams was degraded at the analysis frequencies above 5 MHz due to the limitation of the bandwidth of SRO cavity and was degraded at the analysis frequencies below 5 MHz due to the excess intensity noise of the pump. The two-color quantum correlated twin beams at 1.5 and 3.3 μm have potential applications in high-precision measurements beyond the shot noise level.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3