Author:
Yin Chao,Li Haoran,Hu Zhinan,Li Ying
Abstract
Slope deformation monitoring is the prerequisite for disaster risk assessment and engineering control. Terrestrial laser scanning (TLS) is highly applicable to this field. Coarse registration method of point cloud based on scale-invariant feature transform (SIFT) feature points and fine registration method based on the k-dimensional tree (K-D tree) improved iterative closest point (ICP) algorithm were proposed. The results show that they were superior to other algorithms (such as speeded-up robust features (SURF) feature points, Harris feature points, and Levenberg-Marquardt (LM) improved ICP algorithm) when taking the Stanford Bunny as an example, and had high applicability in coarse and fine registration. In order to integrate the advantages of point measurement and surface measurement, an improved point cloud comparison method was proposed and the optimal model parameters were determined through model tests. A case study was conducted on the left side of the K146 + 150 point at S236 Boshan section, Shandong Province, and research results show that from 14 August 2018 and 9 November 2019, the overall deformation of the slope was small with a maximum value of 0.183 m, and the slope will continue to maintain a stable state without special inducing factors such as earthquake, heavy rainfall and artificial excavation.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献