Xeno-Hybrid Composite Scaffold Manufactured with CAD/CAM Technology for Horizontal Bone-Augmentation in Edentulous Atrophic Maxilla: A Short Communication

Author:

Cristalli Maria Paola,La Monaca GerardoORCID,Pranno NicolaORCID,Annibali Susanna,Iezzi Giovanna,Vozza IoleORCID

Abstract

The present short communication described a new procedure for the reconstruction of the horizontal severely resorbed edentulous maxilla with custom-made deproteinized bovine bone block, fabricated using three-dimensional imaging of the patient and computer-aided design/computer-aided manufacturing (CAD/CAM) technology. The protocol consisted of three phases. In the diagnosis and treatment planning, cone-beam computed tomographic scans of the patient were saved in DICOM (digital imaging and communication in medicine) format, anatomic and prosthetic data were imported into a dedicated diagnostic and medical imaging software, the prosthetic-driven position of the implants, and the graft blocks perfectly adapted to the residual bone structure were virtually planned. In the manufacturing of customized graft blocks, the CAD-CAM technology and the bovine-derived xenohybrid composite bone (SmartBone® on Demand - IBI SA - Industrie Biomediche Insubri SA Switzerland) were used to fabricate the grafts in the exact shape of the 3D planning virtual model. In the surgical and prosthetic procedure, the maxillary ridge augmentation with custom-made blocks and implant-supported full-arch screw-retained rehabilitation were performed. The described protocol offered some advantages when compared to conventional augmentation techniques. The use of deproteinized bovine bone did not require additional surgery for bone harvesting, avoided the risk of donor site morbidity, and provided unlimited biomaterial availability. The customization of the graft blocks reduced the surgical invasiveness, shorting operating times because the manual shaping of the blocks and its adaptation at recipient sites are not necessary and less dependent on the clinician’s skill and experience.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3