Driver Facial Expression Analysis Using LFA-CRNN-Based Feature Extraction for Health-Risk Decisions

Author:

Kim Chang-MinORCID,Hong Ellen J.ORCID,Chung KyungyongORCID,Park Roy C.ORCID

Abstract

As people communicate with each other, they use gestures and facial expressions as a means to convey and understand emotional state. Non-verbal means of communication are essential to understanding, based on external clues to a person’s emotional state. Recently, active studies have been conducted on the lifecare service of analyzing users’ facial expressions. Yet, rather than a service necessary for everyday life, the service is currently provided only for health care centers or certain medical institutions. It is necessary to conduct studies to prevent accidents that suddenly occur in everyday life and to cope with emergencies. Thus, we propose facial expression analysis using line-segment feature analysis-convolutional recurrent neural network (LFA-CRNN) feature extraction for health-risk assessments of drivers. The purpose of such an analysis is to manage and monitor patients with chronic diseases who are rapidly increasing in number. To prevent automobile accidents and to respond to emergency situations due to acute diseases, we propose a service that monitors a driver’s facial expressions to assess health risks and alert the driver to risk-related matters while driving. To identify health risks, deep learning technology is used to recognize expressions of pain and to determine if a person is in pain while driving. Since the amount of input-image data is large, analyzing facial expressions accurately is difficult for a process with limited resources while providing the service on a real-time basis. Accordingly, a line-segment feature analysis algorithm is proposed to reduce the amount of data, and the LFA-CRNN model was designed for this purpose. Through this model, the severity of a driver’s pain is classified into one of nine types. The LFA-CRNN model consists of one convolution layer that is reshaped and delivered into two bidirectional gated recurrent unit layers. Finally, biometric data are classified through softmax. In addition, to evaluate the performance of LFA-CRNN, the performance was compared through the CRNN and AlexNet Models based on the University of Northern British Columbia and McMaster University (UNBC-McMaster) database.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3