Abstract
In the paper, a self-organizing map combined with the recurrence quantification analysis was used to identify flow boiling patterns in a circular horizontal minichannel with an inner diameter of 1 mm. The dynamics of the pressure drop during density-wave oscillations in a single pressure drop oscillations cycle were considered. It has been shown that the proposed algorithm allows us to distinguish five types of non-stationary two-phase flow patterns, such as bubble flow, confined bubble flow, wavy annular flow, liquid flow, and slug flow. The flow pattern identification was confirmed by images obtained using a high-speed camera. Taking into consideration the oscillations between identified two-phase flow patterns, the four boiling regimes during a single cycle of the long-period pressure drop oscillations are classified. The obtained results show that the proposed combination of recurrence quantification analysis (RQA) and a self-organizing map (SOM) in the paper can be used to analyze changes in flow patterns in non-stationary boiling. It seems that the use of more complex algorithms of neural networks and their learning process can lead to the automation of the process of identifying boiling regimes in minichannel heat exchangers.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献