Abstract
We consider a dynamic lightpath provisioning problem in translucent spectrally–spatially flexible optical networks (SS-FONs) in which flexible signal regeneration is achieved with transponders operating in back-to-back (B2B) configurations. In the analyzed scenario, an important aspect that has a significant impact on the network performance is the decision on placement of transponders that can be used for two purposes: transmitting/receiving (add/drop) of optical signals at the source/destination nodes and regeneration of the signals at some intermediate nodes. We propose a new algorithm called scaled average used regenerators (SAUR). The key idea of the SAUR method is based on a data analytics approach, i.e., the algorithm exploits information on network traffic characteristics and the applied dynamic routing algorithm to obtain additional knowledge for the decision on transponder placement. The numerical results obtained for two representative topologies highlight that the proposed SAUR method outperforms reference algorithms in terms of the amount of traffic that can be accepted in the network. In other words, placement of transponders yielded by the SAUR method allows to increase the SS-FON throughput using only the existing resources, i.e., the network operator does not have to invest in new devices or fibers.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献