Abstract
In this work, a two-stage methodology to design super-hydrophobic surfaces was proposed. The first step consists of creating a rough nano/micro-structure and the second step consists of reducing the surface energy using octadecyltrimethoxysilane. The surface roughening was realized by three different short-term pretreatments: (i) Boiling water, (ii) HNO3/HCl etching, or (iii) HF/HCl etching. Then, the surface energy was reduced by dip-coating in diluted solution of octadecyltrimethoxysilane to allow the formation of self-assembled silane monolayers on a 6082-T6 aluminum alloy surface. Super-hydrophobic aluminum surfaces were investigated by SEM-EDS, FTIR, profilometry, and contact and sliding angles measurements. The resulting surface morphologies by the three approaches were structured by a dual hierarchical nano/micro-roughness. The surface wettability varied with the applied roughening pretreatment. In particular, an extremely high water contact angle (around 180°) and low sliding angle (0°) were evidenced for the HF/HCl-etched silanized surface. The results of electrochemical tests demonstrate a remarkable enhancement of the aluminum alloy corrosion resistance through the proposed superhydrophobic surface modifications. Thus, the obtained results evidenced that the anti-wetting behavior of the aluminum surface can be optimized by coupling an appropriate roughening pretreatment with a self-assembled silane monolayer deposition (to reduce surface energy) for anticorrosion application.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献