Hexadecimal Aggregate Approximation Representation and Classification of Time Series Data

Author:

He ZhenwenORCID,Zhang Chunfeng,Ma XiaogangORCID,Liu Gang

Abstract

Time series data are widely found in finance, health, environmental, social, mobile and other fields. A large amount of time series data has been produced due to the general use of smartphones, various sensors, RFID and other internet devices. How a time series is represented is key to the efficient and effective storage and management of time series data, as well as being very important to time series classification. Two new time series representation methods, Hexadecimal Aggregate approXimation (HAX) and Point Aggregate approXimation (PAX), are proposed in this paper. The two methods represent each segment of a time series as a transformable interval object (TIO). Then, each TIO is mapped to a spatial point located on a two-dimensional plane. Finally, the HAX maps each point to a hexadecimal digit so that a time series is converted into a hex string. The experimental results show that HAX has higher classification accuracy than Symbolic Aggregate approXimation (SAX) but a lower one than some SAX variants (SAX-TD, SAX-BD). The HAX has the same space cost as SAX but is lower than these variants. The PAX has higher classification accuracy than HAX and is extremely close to the Euclidean distance (ED) measurement; however, the space cost of PAX is generally much lower than the space cost of ED. HAX and PAX are general representation methods that can also support geoscience time series clustering, indexing and query except for classification.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference69 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Similarity Measurement and Classification of Temporal Data Based on Double Mean Representation;Algorithms;2023-07-19

2. A comparative study on recognizing human activities by applying diverse Machine Learning approaches;2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2022-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3