Pre-Pregnancy Obesity vs. Other Risk Factors in Probability Models of Preeclampsia and Gestational Hypertension

Author:

Lewandowska MałgorzataORCID,Więckowska Barbara,Sajdak Stefan,Lubiński Jan

Abstract

In the face of the obesity epidemic around the world, attention should be focused on the role of maternal obesity in the development of pregnancy. The purpose of this analysis was to evaluate the prediction of preeclampsia (PE) and isolated gestational hypertension (GH) for a number of maternal factors, in order to investigate the importance of pre-pregnancy obesity (body mass index, BMI ≥ 30 kg/m2), compared to other risk factors (e.g., prior PE, pregnancy weight gain (GWG), infertility treatment, interpregnancy interval, family history, the lack of vitamin supplementation, urogenital infection, and socioeconomic factors). In total, 912 women without chronic diseases were examined in a Polish prospective cohort of women with a single pregnancy (recruited in 2015–2016). Separate analyses were performed for the women who developed GH (n = 113) vs. 775 women who remained normotensive, as well as for those who developed PE (n = 24) vs. 775 controls. The probability of each disease was assessed for the base prediction model (age + primiparity) and for the model extended by one (test) variable, using logistic regression. Three measures were used to assess the prediction: area under curve (AUC) of the base and extended model, integrated discrimination improvement (IDI) (the index shows the difference between the value of the mean change in the predicted probability between the group of sick and healthy women when a new factor is added to the model), and net reclassification improvement (NRI) (the index focuses on the reclassification table describing the number of women in whom an upward or downward shift in the disease probability value occurred after a new factor had been added, including results for healthy and sick women). In the GH prediction, AUC increased most strongly when we added BMI (kg/m2) as a continuous variable (AUC = 0.716, p < 0.001) to the base model. The highest IDI index was obtained for prior GH/PE (IDI = 0.068, p < 0.001). The addition of BMI as a continuous variable or BMI ≥ 25 kg/m2 improved the classification for healthy and sick women the most (NRI = 0.571, p < 0.001). In the PE prediction, AUC increased most strongly when we added BMI categories (AUC = 0.726, p < 0.001) to the base model. The highest IDI index was obtained for prior GH/PE (IDI = 0.050, p = 0.080). The addition of BMI categories improved the classification for healthy and sick women the most (NRI = 0.688; p = 0.001). After summing up the results of three indexes, the probability of hypertension in pregnancy was most strongly improved by BMI, including BMI ≥ 25 kg/m2 for the GH prediction, and BMI ≥ 30 kg/m2 for the PE prediction. Main conclusions: Pre-pregnancy BMI was the most likely factor to increase the probability of developing hypertension in pregnancy, compared to other risk factors. Hierarchies of PE and GH risk factors may suggest different (or common) mechanisms of their development.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3