A Modular Framework for Domain-Specific Conversational Systems Powered by Never-Ending Learning

Author:

Pinna Felipe Coelho de Abreu1ORCID,Hayashi Victor Takashi1ORCID,Néto João Carlos1ORCID,Marquesone Rosangela de Fátima Pereira1ORCID,Duarte Maísa Cristina2,Okada Rodrigo Suzuki2,Ruggiero Wilson Vicente1ORCID

Affiliation:

1. Polytechnic School (EPUSP), Universidade de São Paulo, São Paulo 05508-010, Brazil

2. Bradesco Bank, Cidade de Deus, Osasco 06029-900, Brazil

Abstract

Complex and long interactions (e.g., a change of topic during a conversation) justify the use of dialog systems to develop task-oriented chatbots and intelligent virtual assistants. The development of dialog systems requires considerable effort and takes more time to deliver when compared to regular BotBuilder tools because of time-consuming tasks such as training machine learning models and low module reusability. We propose a framework for building scalable dialog systems for specific domains using the semi-automatic methods of corpus, ontology, and code development. By separating the dialog application logic from domain knowledge in the form of an ontology, we were able to create a dialog system for the banking domain in the Portuguese language and quickly change the domain of the conversation by changing the ontology. Moreover, by using the principles of never-ending learning, unsupported operations or unanswered questions create triggers for system knowledge demand that can be gathered from external sources and added to the ontology, augmenting the system’s ability to respond to more questions over time.

Funder

Graduate Program in Electrical Engineering (PPGEE) from the Polytechnic School of the Universidade de São Paulo

Publisher

MDPI AG

Reference36 articles.

1. Yu, C., Zhang, C., Hu, Z., and Zhan, Z. (2023). Computational Intelligence for Engineering and Management Applications: Select Proceedings of CIEMA 2022, Springer.

2. Khan, M.A., Huang, Y., Feng, J., Prasad, B.K., Ali, Z., Ullah, I., and Kefalas, P. (2023). A Multi-Attention Approach Using BERT and Stacked Bidirectional LSTM for Improved Dialogue State Tracking. Appl. Sci., 13.

3. Ultes, S., Rojas Barahona, L.M., Su, P.H., Vandyke, D., Kim, D., Casanueva, I.N., Budzianowski, P., Mrkšić, N., Wen, T.H., and Gasic, M. (August, January 30). PyDial: A Multi-domain Statistical Dialogue System Toolkit. Proceedings of the ACL 2017, System Demonstrations, Vancouver, BC, Canada.

4. Bocklisch, T., Faulkner, J., Pawlowski, N., and Nichol, A. (2017). Rasa: Open source language understanding and dialogue management. arXiv.

5. Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A., Leroy, D., Doumouro, C., Gisselbrecht, T., Caltagirone, F., and Lavril, T. (2018). Snips Voice Platform: An embedded Spoken Language Understanding system for private-by-design voice interfaces. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3