Influence of Demagnetization and Microstructure Non-Homogeneity on Barkhausen Noise in the High-Strength Low-Alloyed Steel 1100 MC

Author:

Pitoňák Martin1,Ganev Nikolaj2ORCID,Zgútová Katarína1,Čapek Jiří2ORCID,Neslušan Miroslav3ORCID,Trojan Karel2

Affiliation:

1. Faculty of Civil Engineering, University of Žilina, Univerzitná 1, 01026 Žilina, Slovakia

2. Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha, Czech Republic

3. Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 01026 Žilina, Slovakia

Abstract

This study deals with two different aspects of the high-strength low-alloyed 1100 MC steel. The first is associated with the remarkable heterogeneity (linked with surface decarburization) in the surface state produced during sheet rolling with respect to the sheet width. The variable thickness surface layer exhibits a microstructure different from that of the deeper bulk. Variation in the thickness of the thermally softened near-surface region strongly affects Barkhausen noise as well. This technique can be considered a reliable tool for monitoring the aforementioned heterogeneity. It can also be reported that the opposite sides of the sheet are different with respect to the surface state, the heterogeneity distribution, and the corresponding Barkhausen noise. These aspects indicate different conditions during hot rolling followed by rapid quenching on the upper and lower rollers. Furthermore, it was found that the degree of decarburizing and the corresponding surface heterogeneity is also a function of C content, and steels with lower C content exhibit less pronounced surface heterogeneity. The second aspect is related to the remarkable asymmetry in Barkhausen noise emission with respect to two consecutive bursts. This asymmetry is due to the presence of remnant magnetization in the sheet produced during manufacturing. The remnant magnetization is coupled to the magnetic field produced by the excitation coil of the Barkhausen noise sensor and strongly contributes to the aforementioned asymmetry. The remnant magnetization attenuates the domain wall mobility, which results in weaker Barkhausen noise. Moreover, the Barkhausen noise envelopes and the extracted features such as the position of the envelope maximum and its width are strongly affected by the remnant magnetization. Insufficient demagnetization makes the body magnetically softer and makes a wider range of magnetic fields in which Barkhausen noise emission can be detected. As soon as sufficient removal of this remnant magnetization is carried out in the vanishing magnetic field (demagnetization), the aforementioned remarkable asymmetry is fully lost.

Funder

VEGA project

Center for Advanced Applied Science

Slovak Research and Development Agency

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3