LM-DeeplabV3+: A Lightweight Image Segmentation Algorithm Based on Multi-Scale Feature Interaction

Author:

Hou Xinyu1,Chen Peng1,Gu Haishuo1

Affiliation:

1. School of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China

Abstract

Street-view images can help us to better understand the city environment and its potential characteristics. With the development of computer vision and deep learning, the technology of semantic segmentation algorithms has become more mature. However, DeeplabV3+, which is commonly used in semantic segmentation, has shortcomings such as a large number of parameters, high requirements for computing resources, and easy loss of detailed information. Therefore, this paper proposes LM-DeeplabV3+, which aims to greatly reduce the parameters and computations of the model while ensuring segmentation accuracy. Firstly, the lightweight network MobileNetV2 is selected as the backbone network, and the ECA attention mechanism is introduced after MobileNetV2 extracts shallow features to improve the ability of feature representation; secondly, the ASPP module is improved, and on this basis, the EPSA attention mechanism is introduced to achieve cross-dimensional channel attention and important feature interaction; thirdly, a loss function named CL loss is designed to balance the training offset of multiple categories and better indicate the segmentation quality. This paper conducted experimental verification on the Cityspaces dataset, and the results showed that the mIoU reached 74.9%, which was an improvement of 3.56% compared to DeeplabV3+; and the mPA reached 83.01%, which was an improvement of 2.53% compared to DeeplabV3+.

Funder

Research and Innovation Project of Graduate Students Supported by Top-notch Innovative Talents Training Funds of the People’s Public Security University of China

Publisher

MDPI AG

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3