Integrating Merkle Trees with Transformer Networks for Secure Financial Computation

Author:

Wang Xinyue1,Lin Weifan1,Zhang Weiting1,Huang Yiwen1,Li Zeyu1,Liu Qian1,Yang Xinze1ORCID,Yao Yifan1,Lv Chunli1

Affiliation:

1. China Agricultural University, Beijing 100083, China

Abstract

In this paper, the Merkle-Transformer model is introduced as an innovative approach designed for financial data processing, which combines the data integrity verification mechanism of Merkle trees with the data processing capabilities of the Transformer model. A series of experiments on key tasks, such as financial behavior detection and stock price prediction, were conducted to validate the effectiveness of the model. The results demonstrate that the Merkle-Transformer significantly outperforms existing deep learning models (such as RoBERTa and BERT) across performance metrics, including precision, recall, accuracy, and F1 score. In particular, in the task of stock price prediction, the performance is notable, with nearly all evaluation metrics scoring above 0.9. Moreover, the performance of the model across various hardware platforms, as well as the security performance of the proposed method, were investigated. The Merkle-Transformer exhibits exceptional performance and robust data security even in resource-constrained environments across diverse hardware configurations. This research offers a new perspective, underscoring the importance of considering data security in financial data processing and confirming the superiority of integrating data verification mechanisms in deep learning models for handling financial data. The core contribution of this work is the first proposition and empirical demonstration of a financial data analysis model that fuses data integrity verification with efficient data processing, providing a novel solution for the fintech domain. It is believed that the widespread adoption and application of the Merkle-Transformer model will greatly advance innovation in the financial industry and lay a solid foundation for future research on secure financial data processing.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3