Enhancing Safety in Automatic Electric Vehicle Charging: A Novel Collision Classification Approach

Author:

Lin Haoyu1ORCID,Quan Pengkun1ORCID,Liang Zhuo1,Wei Dongbo1,Di Shichun1

Affiliation:

1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

With the rise of electric vehicles, autonomous driving, and valet parking technologies, considerable research has been dedicated to automatic charging solutions. While the current focus lies on charging robot design and the visual positioning of charging ports, a notable gap exists in addressing safety aspects during the charging plug-in process. This study aims to bridge this gap by proposing a collision classification scheme for robot manipulators in automatic electric vehicle charging scenarios. In situations with minimal visual positioning deviation, robots employ impedance control for effective insertion. Significant deviations may lead to potential collisions with other vehicle parts, demanding discrimination through a global visual system. For moderate deviations, where a robot’s end-effector encounters difficulty in insertion, existing methods prove inadequate. To address this, we propose a novel data-driven collision classification method, utilizing vibration signals generated during collisions, integrating the robust light gradient boosting machine (LightGBM) algorithm. This approach effectively discerns the acceptability of collision contacts in scenarios involving moderate deviations. Considering the impact of passing vehicles introducing environmental noise, a noise suppression module is introduced into the proposed collision classification method, leveraging empirical mode decomposition (EMD) to enhance its robustness in noisy charging scenarios. This study significantly contributes to the safety of automatic charging processes, offering a practical and applicable collision classification solution tailored to diverse noisy scenarios and potential contact forms encountered by charging robots. The experimental results affirm the effectiveness of the collision classification method, integrating LightGBM and EMD, and highlight its promising prediction accuracy. These findings offer valuable perspectives to steer future research endeavors in the domain of autonomous charging systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3