Performance Study of Black Shale Modified Soil for Road Use Based on Eshelby–Mori–Tanaka Theory

Author:

Hu Min1,Huang Zhangduo1,Chen Jiejin1,Guo Yipeng1,Zhou Yichao1,Liu Dashun1,Guo Rong1

Affiliation:

1. School of Civil Engineering, Changsha University of Science & Technology, Changsha 410114, China

Abstract

Black shale, as a type of soft rock, exhibits high strength when freshly exposed. However, it easily disintegrates upon contact with water, making it unsuitable for direct use in roadbed construction. Using it as discarded material not only increases construction costs but also pollutes the environment. Therefore, the reuse and modification of black shale have become particularly important. Based on the theory of composite material equivalent inclusions, this study investigates the strength and water stability characteristics of black shale gravel after being mixed with cement and compacted with clay. The results show that the strength of cemented soil increases linearly with the cement content. The water absorption properties of the modified soils with different amounts of black shale added are similar, with an average water absorption rate of about 2.53%. The strength of black shale modified soil is generally positively correlated with the cement content, although the linear correlation is not significant. The modified black shale soil used in the experiment is suitable for the subgrade of medium- and light-grade secondary roads and below. The recommended mass ratio is Mshale:Mclay:Mcement = 70:21:9. The unconfined compressive strength of the material under 7-day curing is 1.36 MPa. The relationship between the strength of modified soil, clay strength, cement content, and gravel addition has been established, clarifying the physical significance of each parameter. The “drying and soaking” cycle can accelerate the strength degradation of modified soil. It is recommended to strengthen the construction of roadbed drainage facilities during construction to maintain a stable and dry environment for the modified soil as a roadbed filling material. The research results not only provide clear technical indicators for the reuse of discarded black shale in engineering but also serve as a basis for proportion of crushed stone discarded material as roadbed fill.

Funder

National Natural Science Foundation of China Youth Program

Science and Technology Progress and Innovation Program Project of the Hunan Provincial Department of Transportation

Scientific Research Project of the Hunan Provincial Department of Education

Hunan Natural Science Youth Foundation

Open Fund for Changsha University of Science and Technology Bridge Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3