Comparison of Modern Deep Learning Models for Speaker Verification

Author:

Brydinskyi Vitalii12ORCID,Khoma Yuriy12ORCID,Sabodashko Dmytro1ORCID,Podpora Michal3ORCID,Khoma Volodymyr14ORCID,Konovalov Alexander2,Kostiak Maryna1ORCID

Affiliation:

1. Institute of Computer Technologies, Automation and Metrology, Lviv Polytechnic National University, Bandery 12, 79013 Lviv, Ukraine

2. Vidby AG, Suurstoffi 8, 6343 Risch-Rotkreuz, Switzerland

3. Department of Computer Science, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland

4. Department of Control Engineering, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland

Abstract

This research presents an extensive comparative analysis of a selection of popular deep speaker embedding models, namely WavLM, TitaNet, ECAPA, and PyAnnote, applied in speaker verification tasks. The study employs a specially curated dataset, specifically designed to mirror the real-world operating conditions of voice models as accurately as possible. This dataset includes short, non-English statements gathered from interviews on a popular online video platform. The dataset features a wide range of speakers, with 33 males and 17 females, making a total of 50 unique voices. These speakers vary in age from 20 to 70 years old. This variety helps in thoroughly testing speaker verification models. This dataset is especially useful for research on speaker verification with short recordings. It consists of 10 clips for each person, each clip being no longer than 10 s, adding up to 500 recordings in total. The total length of all recordings is about 1 h and 30 min, which averages to roughly 100 s for each speaker. This dataset is a valuable tool for research in speaker verification, particularly for studies involving short audio clips. The performance of these models is evaluated using common biometric metrics such as false acceptance rate (FAR), false rejection rate (FRR), equal error rate (EER) and detection cost function (DCF). The results reveal that the TitaNet and ECAPA models stand out by presenting the lowest EER (1.91% and 1.71%, respectively) and thus exhibiting higher discriminative features, ensuring, on the one hand, a reduction in intra-class distance (the same speaker), and, on the other hand, maximizing the distance between different speaker embeddings. This analysis also highlights the ECAPA model’s advantageous balance of performance and efficiency, achieving an inference time of 69.43 milliseconds, slightly longer than the PyAnnote models. This study not only compares the performance of models but also provides a comparative analysis of respective model embeddings, offering insights into their strengths and weaknesses. The presented findings serve as a foundation for guiding future research in speaker verification, especially in the context of short audio samples or limited data. This may be particularly relevant for applications requiring quick and accurate speaker identification from short voice clips.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3