Componentwise Perturbation Analysis of the Singular Value Decomposition of a Matrix

Author:

Angelova Vera1ORCID,Petkov Petko2ORCID

Affiliation:

1. Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

2. Department of Engineering Sciences, Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria

Abstract

A rigorous perturbation analysis is presented for the singular value decomposition (SVD) of a real matrix with full column rank. It is proved that the SVD perturbation problem is well posed only when the singular values are distinct. The analysis involves the solution of symmetric coupled systems of linear equations. It produces asymptotic (local) componentwise perturbation bounds on the entries of the orthogonal matrices participating in the decomposition of the given matrix and on its singular values. Local bounds are derived for the sensitivity of the singular subspaces measured by the angles between the unperturbed and perturbed subspaces. Determining the asymptotic bounds of the orthogonal matrices and the sensitivity of singular subspaces requires knowing only the norm of the perturbation of the given matrix. An iterative scheme is described to find global bounds on the respective perturbations, and results from numerical experiments are presented.

Publisher

MDPI AG

Reference34 articles.

1. Horn, R.A., and Charles, R. (2013). Matrix Analysis, Cambridge University Press. [2nd ed.].

2. Stewart, G.W. (1998). Matrix Algorithms: Volume 1: Basic Decompositions, SIAM.

3. Golub, G.H., and Van Loan, C.F. (2013). Matrix Computations, The Johns Hopkins University Press. [4th ed.].

4. On the early history of the singular value decomposition;Stewart;SIAM Rev.,1993

5. Stewart, G., and Sun, J.- (1990). G Matrix Perturbation Theory, Academic Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3