Research on Erosion Effect of Various Submerged Cavitating Jet Nozzles and Design of Self-Rotating Cleaning Device

Author:

Huang Siwen123,Huang Jiangping12,He Kai123ORCID

Affiliation:

1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

2. Shenzhen Key Laboratory of Precision Engineering, Shenzhen 518055, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Submerged cavitating jets can effectively remove marine organisms from ship hulls without damaging the surface paint. To enhance the cleaning efficiency of cavitating jets, the selection of an appropriate nozzle structure and the design of an efficient cleaning device are crucial. In this study, the submerged cavitation effect of different nozzles was analyzed by numerical simulation. The actual cleaning efficacy of the nozzles was confirmed through erosion experiments as well. The simulation and experiment showed that the shear nozzle, absent of a pre-shrinking section and featuring a spherical outlet connected to a diffusion cylindrical section, maintained stable erosion performance at a standoff distance of 30–50 mm. This erosion was primarily attributed to denudation caused by bubble collapse. Based on this shear nozzle, a self-rotating cleaning device was designed and manufactured. A test rig was also established to test the cleaning effect and some parameters of the cleaning device.

Funder

Shenzhen Science and Technology Program

Leading Talent of Guangdong Special Support Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3