Effect of Straight, Inclined and Curved Fins on Natural Convection and Entropy Generation of a Nanofluid in a Square Cavity Influenced by a Magnetic Field

Author:

Khetib YacineORCID,Alahmadi Ahmad Aziz,Alzaed Ali,Azimy HamidrezaORCID,Sharifpur MohsenORCID,Cheraghian GoshtaspORCID

Abstract

In this paper, the free convective heat transfer of nanofluids in a square cavity is simulated using a numerical method. The angle of the cavity could be changed in the horizontal axis from 0 to 90 degrees. The cavity is exposed under a constant magnetic field. Two opposite walls of the cavity are cold and warm, and the rest of the walls are insulated. On the hot wall, there are two fins with the same wall temperature. The equations were discretized by the finite volume method (FVM) and then solved using the SIMPLE algorithm. Three different fin configurations (straight, inclined and curved) were studied in terms of heat transfer rate and generation of entropy. According to the simulation results, the heat transfer rate was improved by tilting the fins toward the top or bottom of the cavity. At Ra = 105 and Ha = 20, the maximum heat transfer rate was achieved at a cavity inclination of 90° and 45°, respectively, for straight and curved fins. In the horizontal cavity, heat transfer rate could be improved up to 6.4% by tilting the fins and up to 4.9% by warping them. Increasing the Hartmann number from 0 to 40 reduced the Nusselt number and entropy generation by 37.9% and 33.8%, respectively.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling the Dynamics of Entropy Generation in Enclosures: A Systematic Review;International Journal of Thermofluids;2024-02

2. Magneto-thermal convection and entropy production of hybrid nanofluid in an inclined chamber having a solid block;International Journal of Numerical Methods for Heat & Fluid Flow;2023-12-22

3. Numerical investigation of mixed convection of non‐Newtonian fluid in a vented square cavity with fixed baffle;Heat Transfer;2023-08-02

4. Modeling of modified Eyring–Powell nanofluid flow subject to thermal-solutal stratification phenomenon;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-03-07

5. Progressive review of heat transfer enhancement technologies in 2010–2020;Sustainable Energy Technologies and Assessments;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3