Grid-Connected Inverter Grid Voltage Feedforward Control Strategy Based on Multi-Objective Constraint in Weak Grid

Author:

Wang Su’e1,Cui Kaiyuan1,Hao Pengfei1

Affiliation:

1. College of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

Abstract

In weak grid, feedforward of grid voltage control is widely used to effectively suppress grid-side current distortion of inverters caused by harmonics in point of common coupling (PCC) voltage. However, due to its introduction of a positive feedback loop related to the grid impedance, it results in a significant reduction in the system phase margin. In view of this, in this paper, the output impedance of a three-phase LCL grid-connected inverter under a quasi-proportional resonant (QPR) controller is first modeled. Instead of the traditional grid voltage feedforward control strategy, a band-pass filter is added to the grid voltage feedforward channel. Secondly, a multi-objective constraint method is proposed to make improvements to the feedforward function. Then, a multi-objective constraint function is established with the constraints of base-wave current tracking performance, system stability margin, and low-frequency amplitude, and the feasibility of its function optimization design method is verified. Theoretical analysis shows that the optimized grid voltage feedforward control strategy can effectively reshape the phase characteristics of the system output impedance, which greatly broadens the adaptation range of the system to the grid impedance. Finally, the effectiveness of the proposed control strategy is verified by building a semi-physical simulation experimental platform based on RT-LAB OP4510.

Funder

the Key Research and Development Plan of Shaanxi Province

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3