Energy Management Strategy for Distributed Photovoltaic 5G Base Station DC Microgrid Integrated with the CF-P&O-INC MPPT Algorithm

Author:

Cai Zheng12ORCID,Tang Yuben3,Guo Wenhao23,Chen Tingting12,Zheng Hanbo3ORCID,Qin Tuanfa12

Affiliation:

1. School of Computer and Electronic Information, Guangxi University, Nanning 530004, China

2. The Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China

3. School of Electrical Engineering, Guangxi University, Nanning 530004, China

Abstract

With its technical advantages of high speed, low latency, and broad connectivity, fifth-generation mobile communication technology has brought about unprecedented development in numerous vertical application scenarios. However, the high energy consumption and expansion difficulties of 5G infrastructure have become the main obstacles restricting its widespread application. Therefore, aiming to optimize the energy utilization efficiency of 5G base stations, a novel distributed photovoltaic 5G base station DC microgrid structure and an energy management strategy based on the Curve Fitting–Perturb and Observe–Incremental Conductance (CF-P&O-INC) Maximum Power Point Tracking (MPPT) algorithm from the perspectives of energy and information flows are proposed. Simulation results show that the proposed MPPT algorithm can increase the efficiency to 99.95% and 99.82% under uniform irradiation and partial shading, respectively. Under the proposed strategy, when the base station load changes drastically, the voltage fluctuation of the DC bus is less than 1.875%, and returns to a steady state within 0.07s, alleviating the high energy consumption of 5G base stations effectively and achieving coordinated optimization management of various types of energy in multi-source power supply systems.

Funder

Guangxi Key Research and Development Plan Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3