Effects of Steel Slag on the Hydration Process of Solid Waste-Based Cementitious Materials

Author:

Ren Caifu1,Wang Jixiang1,Duan Kairui1,Li Xiang1,Wang Dongmin1

Affiliation:

1. School of Chemical and Environment Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

Aiming to enhance the comprehensive utilization of steel slag (SS), a solid waste-based binder consisting of SS, granulated blast furnace slag (BFS), and desulfurization gypsum (DG) was designed and prepared. This study investigated the reaction kinetics, phase assemblages, and microstructures of the prepared solid waste-based cementitious materials with various contents of SS through hydration heat, XRD, FT-IR, SEM, TG-DSC, and MIP methods. The synergistic reaction mechanism between SS and the other two wastes (BFS and DG) is revealed. The results show that increasing SS content in the solid waste-based binder raises the pH value of the freshly prepared pastes, advances the main hydration reaction, and shortens the setting time. With the optimal SS content of 20%, the best mechanical properties are achieved, with compressive strengths of 19.2 MPa at 3 d and 58.4 MPa at 28 d, respectively. However, as the SS content continues to increase beyond 20%, the hydration process of the prepared binder is delayed. The synergistic activation effects between SS and BFS with DG enable a large amount of ettringite (AFt) formation, guaranteeing early strength development. As the reaction progresses, more reaction products CSH and Aft are precipitated. They are interlacing and overlapping, jointly refining and densifying the material’s microstructure and contributing to the long-term strength gain. This study provides a reference for designing and developing solid waste-based binders and deepens the insightful understanding of the hydration mechanism of the solid waste-based binder.

Funder

National Key Research and Development Program of China

Chinese National Natural Science Foundation-Regional Innovation and Development Joint Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3