Plant Nutrient Uptake in Full-Scale Floating Treatment Wetlands in a Florida Stormwater Pond: 2016–2020

Author:

White Sarah A.ORCID

Abstract

Nutrient enrichment of surface waters degrades water quality. Municipalities need effective and economical solutions to remove nutrients from surface waters. From July 2016 to May 2020, full-scale (900 m2, 5% cover) floating treatment wetlands (FTWs) were deployed in Wickham Park pond, a eutrophic water body (0.13 mg/L total phosphorus (P), 0.96 mg/L total nitrogen (N)). The plants in FTWs in close proximity to a SB10000 mixer fixed N and P more efficiently. The rate of N (g/m2/year) fixed within tissues was highest for Juncus effusus (13.5), Agrostis alba (13.2), and Sagittaria lancifolia (12.1). The rate of P (g/m2/year) fixed within plant tissues was similar for all species (3.77, Agrostis alba, Canna spp., Iris hexagona, Juncus effusus, and Sagittaria lancifolia) save Pontederia cordata (2.52) volunteer species (1.41). The N and P removed with plant harvest were similar for non-mixed and mixed FTWs. Notably, the N:P ratio in plant tissues in 2017 (pre-mixer installation) was 11:1; after mixer installation (2018–2020), N:P ratios averaged 2.7:1, indicating increased P fixation within plant tissues. In 2017, 12,828 kg of plant tissues was harvested, removing 334 kg of N and 29.5 kg of P. In 2019, 32,958 kg of plant biomass was harvested from the pond, removing 425 kg of N and 138 kg of P. In 2020, 27,945 kg of biomass was harvested from FTWs, removing 267 kg of N and 95 kg of P. From 2016 to 2020, 73,000 kg of biomass was harvested, removing 1026 kg of N and 262 kg of P from Wickham Park pond. Knowing the total fresh biomass of tissues removed from FTWs at harvest is critical for accuracy in reporting nutrient removal aided by FTWs.

Funder

U.S. Environmental Protection Agency

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3