Evaluating Soil Carbon as a Proxy for Erosion Risk in the Spatio-Temporal Complex Hydropower Catchment in Upper Pangani, Northern Tanzania

Author:

Amasi Aloyce I. M.ORCID,Wynants MaartenORCID,Kawala Remigius A.ORCID,Sawe Shovi F.,Blake William H.,Mtei Kelvin M.ORCID

Abstract

Land use conversion is generally accompanied by large changes in soil organic carbon (SOC). SOC influences soil erodibility through its broad control on aggregate stability, soil structure and infiltration capacity. However, soil erodibility is also influenced by soil properties, clay mineralogy and other human activities. This study aimed to evaluate soil organic carbon as proxy of soil erosion risk in the Nyumba ya Mungu (NYM) catchment in Northern Tanzania. Soil organic carbon (SOC) was measured by an AgroCares scanner from which the soil organic matter (SOM) was derived using the conversional van Bemmelen factor of 1.72. A regression analysis performed between the measured loss on ignition (LOI) values and SOM from the AgroScanner showed a strong positive correlation in all land use classes (LOIFL R2 = 0.85, r = 0.93, p < 0.0001; LOICL R2 = 0.86, r = 0.93, p = 0.0001; LOIGL R2 = 0.68, r = 0.83, p = 0.003; LOIBS R2 = 0.88, r = 0.94, p = 0.0001; LOIBL R2 = 0.83, r = 0.91, p = 0.0002). This indicates that SOC from the soil scanner provided a good representation of the actual SOM present in soils. The study also revealed significant differences in the soil aggregate stability (WSA) and SOM stock between the different land use types in the Upper Pangani Basin. The WSA decreases approximately in the following order: grassland > forest land > bare land > cultivated > bush land. Land use change can thus potentially increase the susceptibility of soil to erosion risk when SOC is reduced. Since WSA was directly related to SOM, the study indicates that, where formal measurements are limited, this simple and inexpensive aggregate stability test can be used by farmers to monitor changes in their soils after management changes and to tentatively assess SOC and soil health.

Publisher

MDPI AG

Reference84 articles.

1. World Population Prospects,2019

2. Land Use Change Patterns and Root Causes on the Southern Slopes of Mountain Kilimanjaro, Tanzania;Mbonile,2003

3. Climate change modelling for the Pangani Basin to support the IWRM planning process;Tadross,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3