Narrowband Internet-of-Things to Enhance the Vehicular Communications Performance

Author:

Hamarsheh Qadri,Daoud OmarORCID,Baniyounis Mohammed,Damati AhlamORCID

Abstract

The interest in vehicle-to-vehicle communication has gained a high demand in the last decade. This is due to the need for safe and robust smart communication, while this type of communication is vulnerable to latency and power. Therefore, this work proposes the Narrowband Internet-of-Things to enhance the robustness of the vehicular communication system. Accordingly, the system’s QoS is enhanced. This enhancement is based on proposing two parts to cover the latency and the harmonics issues, in addition to proposing a distributed antenna configuration for the moving vehicles under a machine learning benchmark, which uses the across-entropy algorithm. The proposed environment has been simulated and compared to the state-of-the-art work performance. The simulation results verify the proposed work performance based on three different parameters; namely the latency, the mean squared error rate, and the transmitted signal block error rate. From these results, the proposed work outperforms the literature; at the probability of 10−3, the proposed work reduces the peak power deficiency by almost 49%, an extra 23.5% enhancement has been attained from the self-interference cancellation side, and a bit error rate enhancement by a ratio of 31%.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3