Productivity-Index Behavior for a Horizontal Well Intercepted by Multiple Finite-Conductivity Fractures Considering Nonlinear Flow Mechanisms under Steady-State Condition

Author:

Cao Maojun,Xiao Hong,Wang Caizhi

Abstract

In this paper, a mathematical model is proposed to investigate the effect of nonlinear flow mechanisms on productivity-index (PI) behavior in hydraulically fractured reservoirs during steady-state condition. This approach focuses on the fact that PI approaches a constant value at a certain time, indicating the beginning of steady state. In this model, the reservoirs are considered as an elliptical-shaped drainage with constant-pressure boundary, which is depleted by a multiple-fractured horizontal well (MFHW), and various nonlinear flow mechanisms, such as the non-Darcy flow effect and pressure-dependency effect, control flow patterns in the hydraulic fractures. Then, an exact algorithm of solving the resulting nonlinear equations is developed to obtain the PI of MFHW using a semi-analytical approach. Next, type curves are generated to investigate the influences of flow mechanisms and fracture properties on PI. The most interesting points in this study are the following: (1) PI is determined by the properties of MHFW (i.e., dimensions and configuration), the reservoir geometry, and flow mechanism; (2) PI is deteriorated by non-Darcy flow caused by inertial forces; and (3) PI is reduced under the influence of pressure sensitivity caused by the degradation of dynamic conductivity. Generally, this study provides a significant insight into understanding the factors affecting the productivity of a MFHW with nonlinear flow mechanisms.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3