Replacement Strategy of Insulators Established by Probability of Failure

Author:

Sanyal Simpy,Kim TaeyongORCID,Seok Chang-Sung,Yi Junsin,Koo Ja-Bin,Son Ju-Am,Choi In-Hyuk

Abstract

Insulators comprise only 5% of the capital cost of transmission lines; they are accountable for 70% of line interruptions and 50% of maintenance costs of transmission lines. Major transmission lines situated in different parts of the world were mostly all constructed 30 years ago. These lines have either completed or are approaching the active life at 30 years. It is not possible to replace all insulators at a time in any utility. From a standpoint of consistency, it is quite important to locate insulators that require replacement prior to the occurrence of failure. Recalling these issues, a replacement strategy was modeled on insulator samples, operated at 154 kV, mechanical and electrical rating (M+E) 25,000 lbs and within the 10–50 years (Y) age group, collected in bulk for laboratory evaluation, based on the probability of mechanical failure (P(F)) of insulators. For conducting these studies, tensile load test such as combined electrical and mechanical failing load test was performed on selected 30 new and aged porcelain insulator samples from bulk to access recent condition. It was observed that insulators under service for 50 years manifested a decrease of 89.3% in quality factor (K), as compared to insulators within 10 years of service. A micro-structural study was carried out by using an optical microscope (OM) and a scanning electron microscope (SEM) for the further confirmation of previous evaluations. P(F) was derived by implementing Weibull distribution on the experimental observations. It was observed that insulators with an age of 50 years depicted a 2.7% increase in P(F), as compared to insulators with an age of 10 years. This article discussed a strategy for accessing the recent condition of new, aged bulk samples and the criteria of the replacement of the insulator string based on P(F).

Funder

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3