Abstract
The Mg-Li binary system is characterized by the presence of α-Mg(Li) and β-Li(Mg) phases, where magnesium exists in ordered and disordered forms that may affect the hydrogenation properties of magnesium. Therefore, the hydrogenation properties of an AZ31 alloy modified by the addition of 4.0 wt.%, 7.5 wt.% and 15.0 wt.% lithium were studied. The morphology (scanning electron microscopy (SEM)), structure, phase composition (X-ray diffraction (XRD)) and hydrogenation properties (differential scanning calorimetry (DSC)) of AZ31 with various lithium contents were investigated. It was found that the susceptibility of magnesium in the form of α-Mg(Li) to hydrogenation was higher than that for the magnesium occupying a disordered position in β-Li(Mg) solid solutions. Magnesium hydride was obtained as a result of hydrogenation of the AZ31 alloy that was modified with 4.0 wt.%, 7.5 wt.% and 15.0 wt.% additions of lithium, and was characterized by high hydrogen desorption activation energies of 250, 187 and 224 kJ/mol, respectively.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献