The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage

Author:

Sikora Jakub,Niemiec Marcin,Szeląg-Sikora AnnaORCID,Gródek-Szostak ZofiaORCID,Kuboń MaciejORCID,Komorowska Monika

Abstract

Optimization of plant fertilization is an important element of all quality systems in primary production, such as Integrated Production, GLOBAL G.A.P. (Good Agriculture Practice) or SAI (Sustainable Agriculture Initiative). Fertilization is the most important element of agricultural treatments, affecting the quantity and quality of crops. The aim of the study was to assess greenhouse gas (GHG) emissions in the cultivation of Chinese cabbage, depending on the technological variant. The factor modifying the production technology was the use of fertilizers with a slow release of nutrients. One tonne of marketable Chinese cabbage crop was selected as the functional unit. To achieve the research goal, a strict field experiment was carried out. Calculation of the total amount of GHG emitted from the crop was made in accordance with ISO 14040 and ISO 14044. The system boundaries included the production and use of fertilizers and pesticides, energy consumption for agricultural practices and the emission of gases from soil resources and harvesting residue. The use of slow-release fertilizers resulted in a greater marketable yield of cabbage compared to conventional fertilizers. The results of the research indicate a significant potential for the use of slow-release fertilizers in reducing agricultural emissions. From the environmental and production point of view, the most favourable variant is the one with 108 kg N·ha−1 slow-release fertilizers. At a higher dose of this element, no increase in crop yield was observed. At this nitrogen dose, a 30% reduction in total GHG emissions and a 50% reduction in fertilizer emissions from the use of per product functional unit were observed. The reference object was fertilization in accordance with production practice in the test area.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3