Numerical and Experimental Analysis of the Thermal Performances of SiC/Water and Al2O3/Water Nanofluid Inside a Circular Tube with Constant-Increased-PR Twisted Tape

Author:

Ahmad Saadah,Abdullah Shahrir,Sopian KamaruzzamanORCID

Abstract

The simultaneous use of two passive methods (twisted tape and a nanofluid) in a heat transfer system will increase the average Nusselt number (Nu) of the system. However, the presence of inserts and nanoparticles inside the tube will create higher pressure drop (ΔP) in the system, which can eventually affect the overall enhancement ratio (η), especially at higher Reynolds numbers (Re). Several modifications of twisted tapes have been made to reduce ΔP, but most showed a decreasing trend of η as Re increased. The objective of this study is to design a new geometry of twisted tape that yields a larger value of Nu and a smaller value of ΔP, which can result in a larger value of η especially at higher Re. A simulation and experimental analysis are conducted in which Re ranges from 4000–16,000 with two types of nanofluids (SiC/Water and Al2O3/Water) at various values of the volume fraction, (φ) (1–3%). ANSYS FLUENT software with the RNG k-ɛ turbulent model is adopted for the simulation analysis. Three types of twisted tape are used in the analysis: classic twisted tape with a pitch ratio of 2 (TT PR2), constant-increasing-pitch-ratio twisted tape (TT IPR) and constant-decreasing-pitch-ratio twisted tape (TT DPR). The use of TT IPR generates a stronger swirling flow at the inlet of the tube and smaller ∆P, especially near the outlet region. The highest value of η is obtained for 3% SiC/Water nanofluid that is flowing through a smooth circular tube with TT IPR inserts at Re of 10,000.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3