Affiliation:
1. College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
2. CNPC Engineering Technology R&D Co., Ltd., Beijing 102206, China
3. CNPC Great Wall Drilling Engineering Co., Ltd., Beijing 102206, China
Abstract
Lost circulation control remains a challenge in drilling operations. Self-healing gels, capable of self-healing in fractures and forming entire gel block, exhibit excellent resilience and erosion resistance, thus finding extensive studies in lost circulation control. In this study, layered double hydroxide, Acrylic acid, 2-Acrylamido-2-methylpropane sulfonic acid, and CaCl2 were employed to synthesize organic-inorganic nanocomposite gel with self-healing properties. The chemical properties of nanocomposite gels were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy and thermogravimetric analysis. layered double hydroxide could be dispersed and exfoliated in the mixed solution of Acrylic acid and 2-Acrylamido-2-methylpropane sulfonic acid, and the swelling behavior, self-healing time, rheological properties, and mechanical performance of the nanocomposite gels were influenced by the addition of layered double hydroxide and Ca2+. Optimized nanocomposite gel AC6L3, at 90 °C, exhibits only a self-healing time of 3.5 h in bentonite mud, with a storage modulus of 4176 Pa, tensile strength of 6.02 kPa, and adhesive strength of 1.94 kPa. In comparison to conventional gel, the nanocomposite gel with self-healing capabilities demonstrated superior pressure-bearing capacity. Based on these characteristics, the nanocomposite gel proposed in this work hold promise as a candidate lost circulation material.
Funder
Development and application of key chemical materials in oilfield wellbore
Development of Key Engineering Technology and Equipment for Ultra-Deep Drilling of Ten Thousand Meters
Research on Drilling and Production Engineering Technology for the Deep Coal Bed Methane and Scientific and Technological Demonstration Project
Research and Technology Development Project of CNPC Engineering Technology Research Institute Co., Ltd.
Scientific Research and Technological Development Project of CNPC