Evaluation of Profile Control and Oil Displacement Effect of Starch Gel and Nano-MoS2 Combination System in High-Temperature Heterogeneous Reservoir

Author:

Zhang Lianfeng12,Liu Yanhua12,Wang Zhengxin12,Li Hao12,Zhao Yuheng3,Pan Yinuo3,Liu Yang3,Yuan Weifeng3ORCID,Hou Jirui3

Affiliation:

1. Key Laboratory of Enhanced Oil Recovery of Henan Province, Nanyang 473000, China

2. Exploration and Development Research Institute of Henan Oilfield Branch Company, Sinopec, Nanyang 473000, China

3. Research Institute of Unconventional Petroleum Science and Technology, China University of Petroleum (Beijing), Beijing 102249, China

Abstract

The Henan Oilfield’s medium-permeability blocks face challenges such as high temperatures and severe heterogeneity, making conventional flooding systems less effective. The starch gel system is an efficient approach for deep profile control in high-temperature reservoirs, while the nano-MoS2 system is a promising enhanced oil recovery (EOR) technology for high-temperature low-permeability reservoirs. Combining these two may achieve the dual effects of profile control and oil displacement, significantly enhancing oil recovery in high-temperature heterogeneous reservoirs. The basic performance evaluation of the combination system was carried out under reservoir temperature. Displacement experiments were conducted in target blocks under different permeabilities and extreme disparity core flooding to evaluate the combination system’s oil displacement effect. Additionally, the displacement effects and mechanisms of the starch gel and nano-MoS2 combination system in heterogeneous reservoirs were evaluated by simulating interlayer and intralayer heterogeneity models. The results show that the single nano-MoS2 system’s efficiency decreases with increased core permeability, and its effectiveness is limited in triple and quintuple disparity parallel experiments. After injecting the starch gel–nano-MoS2 combination system, the enhanced oil recovery effect was significant. The interlayer and intralayer heterogeneous models demonstrated that the primary water flooding mainly affected the high-permeability layers, while the starch gel effectively blocked the dominant channels, forcing the nano-MoS2 oil displacement system towards unswept areas. This coordination significantly enhanced oil displacement, with the combination system improving recovery by 15.33 and 12.20 percentage points, respectively. This research indicates that the starch gel and nano-MoS2 combination flooding technique holds promise for enhancing oil recovery in high-temperature heterogeneous reservoirs of Henan Oilfield, providing foundational support for field applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3