An Integrated Approach-Based FMECA for Risk Assessment: Application to Offshore Wind Turbine Pitch System

Author:

Wang Zhen,Wang RongxiORCID,Deng Wei,Zhao Yong

Abstract

Failure mode, effects and criticality analysis (FMECA) is a well-known reliability analysis tool for recognizing, evaluating and prioritizing the known or potential failures in system, design, and process. In conventional FMECA, the failure modes are evaluated by using three risk factors, severity (S), occurrence (O) and detectability (D), and their risk priorities are determined by multiplying the crisp values of risk factors to obtain their risk priority numbers (RPNs). However, the conventional RPN has been considerably criticized due to its various shortcomings. Although significant efforts have been made to enhance the performance of traditional FMECA, some drawbacks still exist and need to be addressed in the real application. In this paper, a new FMECA model for risk analysis is proposed by using an integrated approach, which introduces Z-number, Rough number, the Decision-making trial and evaluation laboratory (DEMATEL) method and the VIsekriterijumska optimizacija i KOmpromisno Resenje (VIKOR) method to FMECA to overcome its deficiencies in real application. The novelty of this paper in theory is that the proposed approach integrates the strong expressive ability of Z-numbers to vagueness and uncertainty information, the strong point of DEMATEL method in studying the dependence among failure modes, the advantage of rough numbers for aggregating experts’ diversity evaluations, and the strength of VIKOR method to flexibly model multi-criteria decision-making problems. Based on the integrated approach, the proposed risk assessment model can favorably capture and aggregate FMECA team members’ diversity evaluations and prioritize failure modes under different types of uncertainties with considering the failure propagation. In terms of application, the proposed approach was applied to the risk analysis of failure modes in offshore wind turbine pitch system, and it can also be used in many industrial fields for risk assessment and safety analysis.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3