Improvements in the Water Retention Characteristics and Thermophysical Parameters of Backfill Material in Ground Source Heat Pumps by a Molecular Sieve

Author:

Luo TingtingORCID,Pei Peng,Chen Yixia,Hao Dingyi,Wang Chen

Abstract

The thermophysical properties of backfill material (BM) in a heat exchange borehole significantly influence the heat exchange effect of ground source heat pumps (GSHPs). Several treatments such as compaction and adding bentonite, cement, and fine sands are often used to improve the thermophysical properties. In this study, a 3A molecular sieve (3A-MS), a type of porous material, was added to the BM to enhance its water maintaining capacity. Three types of backfill materials with different additive contents, named as BM-0, BM-1, and BM-2, were examined. The variation of the BM properties such as the soil–water characteristic curve (SWCC), thermal conductivity, specific heat capacity, and thermal diffusivity with the groundwater content were investigated through a series of experiments and simulations. A scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and the BET method for specific surface area pore size analysis were used to characterize the material. The results indicated that the specific heat capacity improved with the water content whereas the thermal conductivity and thermal diffusivity decreased with the water content. The variation of the buried pipe outlet temperature with the change of the thermal physical parameters of the BM were researched by a numerical simulation and theoretical calculations; the results showed that BM-2 could raise the heat transfer rate per meter by 45.9% in summer and 118.4% in winter compared with the backfill materials without groundwater (NW). The research results provide theoretical support for the improvement of BM for ground source heat pump projects where abundant groundwater is available.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Guizhou Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3