Analysis of Voltage and Reactive Power Algorithms in Low Voltage Networks

Author:

Stanelytė DaivaORCID,Radziukynas Virginijus

Abstract

The rapid development of renewable energy sources and electricity storage technologies is further driving the change and evolution of traditional energy systems. The aim is to interconnect the different electricity systems between and within countries to ensure greater reliability and flexibility. However, challenges are faced in reaching it, such as the power grid complexity, the system control, voltage fluctuations due to the reverse power flow, equipment overloads, resonance, incorrect island setting, and the diversity of user needs. The electricity grid digitalization in the market also requires the installation of smart devices to enable real-time information exchange between the generator and the user. Inverter-based distributed generation (DG) may be used to control the grid voltage. Smart PV inverters have the capability to supply both inductive and capacitive reactive power to control the voltage at the point of interconnection with the grid, and only technical parameters of smart PV inverters limit this capability. Reactive power control is related to ensuring the quality of voltage in the electricity distribution network and compensating reactive power flows, which is a technical–economic aspect. The goal of this research is to present an analysis of controllers that supply reactive power to the electrical grid via PV systems. This research analyzes recent research on local, centralized, distributed, and decentralized voltage control models in distribution networks. The article compares various approaches and highlights their advantages and disadvantages. The voltage control strategies and methodologies mentioned in the article can serve as a theoretical foundation and provide practical benefits for PV system development in distribution networks. The results of the research show that the local voltage control approach, as well as linear and intelligent controllers, has great potential.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3