Research on the Flow-Induced Stress Characteristics of Head-Cover Bolts of a Pump-Turbine during Turbine Start-Up

Author:

Wang Zhengwei1,Yang Juwei2,Wang Wei1,Qu Jie2,Huang Xingxing3ORCID,Zhao Weiqiang1ORCID

Affiliation:

1. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

2. Anhui Jinzhai Pumped Storage Power Co., Ltd., Lu’An 237333, China

3. InnoFuture GmbH, Binzstrasse 5, 8953 Zurich, Switzerland

Abstract

Nowadays, pump-turbine units have to experience multiple start-stops every day to balance the power production and consumption on the grid. During the transient process of turbine start-up, the hydraulic forces applied to the head-cover would change dramatically and induce high-level stresses on the head-cover bolts. As key components of large hydraulic turbine units, the head-cover bolts are subjected to tens of thousands of tonnes of hydraulic excitation force during operation. Special attention should be paid to the design of the head-cover bolts of large hydraulic pump-turbine units because these units have high water heads and high hydraulic excitation forces. Therefore, the safe design of the head-cover bolts is extremely important to maintain the operational safety of the whole unit. This paper investigates the flow-induced stress characteristics of the head-cover bolts during turbine start-up in a large prototype pump-turbine unit. A complete 3D fluid model and a corresponding 3D structural model, including the head-cover bolts of the pump-turbine unit, were created. The fluid–structure coupling method was used to calculate the structural stresses caused by fluid flow during turbine start-up. The pressure files during turbine start-up calculated by the CFD tool were transferred and mapped to the finite element model of the structural components of the pump-turbine unit. Subsequently, the flow-induced stress characteristics of the head-cover bolts were numerically simulated. The simulation results showed that the hydraulic excitation force on the head-cover bolts increased significantly during turbine start-up, and the displacement and the stress distributions of different head-cover bolts were not uniform. The calculation methods and conclusions in this paper can also be applied to evaluate the flow-induced stress characteristics of head-cover bolts for similar hydraulic pump-turbine units.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference44 articles.

1. Failure Analysis of Runner Blades in a Francis Hydraulic Turbine—Case Study;Eng. Fail. Anal.,2016

2. Investigating the Sayano-Shushenskaya Hydro Power Plant Disaster;Peltier;Power,2010

3. Causes of Header Bolt Fracture of a Pumped Storage Power Station;Zhao;J. Yangtze River Sci. Res. Inst.,2019

4. Failure Analysis on Fracture of Worm Gear Connecting Bolts;Ling;Eng. Fail. Anal.,2014

5. Failure Investigation of the Wind Turbine Blade Root Bolt;Liu;J. Fail. Anal. Prev.,2013

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3