Abstract
For the construction of transport infrastructure (including pipeline bridges for oil and gas transportation) in the conditions of the Far North, it is necessary to improve modern regulatory and technological base for using the fiber-reinforcing polymers. It is necessary to conduct searching research to determine the conditions and shapes of application of the fiber-reinforced polymer (FRP) in the load-bearing structures of bridges and pipelines through barriers. One such searching research is the study of the use of a suspension hybrid bridge with a superstructure of FRP. For this purpose, the calculations of finite-element models of pedestrian suspension bridges were performed and their aerodynamic stability was investigated on the section models in a wind tunnel. The novelty of the study consists in the proposed additions to the structure of the bridge, and the permissible geometric of the cross-sections of the superstructure were established for ensuring aerodynamic stability. Finally, this was the first time that it was directly established that the strength, stiffness and aerodynamic stability of a suspension hybrid bridge were provided.
Funder
Russian Foundation for Basic Research
Government of the Novosibirsk Region
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference31 articles.
1. Use of fibre reinforced polymers in bridge construction;Keller,2002
2. Use of Fibre-Reinforced Polymers in Bridge Construction. State of the Art in Hybrid and All-Composite Structures
http://upcommons.upc.edu/pfc/handle/2099.1/12353
3. Cyclic behaviour of geocell-reinforced backfill behind integral bridge abutment
4. Design of a hybrid span structure of a road bridge;Ivanov,2014
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献