Hydrogen Production by Water Electrolysis with Low Power and High Efficiency Based on Pre-Magnetic Polarization

Author:

Li KeORCID,Zhang Heng,Zheng Xiaoyu,Liu Chang,Chen Qianding

Abstract

In this paper, a method of efficient hydrogen production using low-power electrolysis based on pre-magnetic polarization was proposed in order to improve the rate of hydrogen production by water electrolysis, with reduced energy consumption, molecular polarity, and stress–strain characteristics of distilled water under the condition of a pre-magnetic field. By constructing a microphysical model of hydrogen proton energy-level transition and a macroscopic mathematical model corresponding to magnetization vector-polarization hydrogen proton concentration in the pre-magnetic field, the ionic conductivity, electrolyte current density, interelectrode voltage, and hydrogen production efficiency under a varying magnetic field were qualitatively and quantitatively analyzed. In addition, an adjustable pre-magnetic polarization hydrolyzing hydrogen production test platform was set up to verify the effectiveness of the proposed method. The repeated test results, within a magnetic field strength range of 0–10,000 GS, showed that the conductivity of distilled water after pre-magnetic polarization treatment increased by 2–3 times, the electrolytic current density of the PEM (Proton Exchange Membrane) increased with increasing magnetic field strength, the voltage between the poles continuously decreased, and the hydrogen production rate was significantly improved. When the magnetic field strength reached 10,000 GS, the rate of hydrogen production by the electrolysis of distilled water increased by 15–20% within a certain period of time.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3