Renewable Energy System Controlled by Open-Source Tools and Digital Twin Model: Zero Energy Port Area in Italy

Author:

Agostinelli SofiaORCID,Cumo Fabrizio,Nezhad Meysam Majidi,Orsini Giuseppe,Piras GiuseppeORCID

Abstract

The present paper deals with an infrastructure digitization policy to optimize maintenance processes and energy efficiency to transform port areas to ZED (Zero Energy District). The Lazio Region started the process for all its ports in 2020. The Anzio port started and developed as a pilot project as it is a particularly representative sample for the Mediterranean Sea reality due to its geomorphological conformation. The study aimed to develop energy-saving procedures and strategies and integrate production systems from Renewable Energy Systems (RESs) for sustainable mobility. In the article, these strategies are described in detail and energy analysis is carried out, starting from the current state and demonstrating the potential energy self-sufficiency of the infrastructure. Finally, the investigation’s potential utilizing a Digital Twin (DT) of the area is highlighted. Furthermore, the BIM (Building Information Modeling) and GIS (Geographic Information System) combining possibility to maximize the energy efficiency measures beneficial impact are discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3