Uncertainty Study of the In-Vessel Phase of a Severe Accident in a Pressurized Water Reactor

Author:

Šadek SinišaORCID,Grgić Davor,Allison ChrisORCID,Perez-Ferragut Marina

Abstract

A comprehensive uncertainty analysis in the event of a severe accident in a two-loop pressurized water reactor is conducted using an uncertainty package integrated in the ASYST code. The plant model is based on the nuclear power plant (NPP) Krško, a Westinghouse-type power plant. The station blackout scenario with a small break loss of coolant accident is analyzed, and all processes of the in-vessel phase are covered. A best estimate plus uncertainty (BEPU) methodology with probabilistic propagation of input uncertainty is used. The uncertain parameters are selected based on their impact on the safety criteria, the operation of the NPP safety systems and to describe uncertainties in the initial and boundary conditions. The number of required calculations is determined by the Wilks formula from the desired percentile and confidence level, and the values of the uncertain parameters are randomly sampled according to appropriate distribution functions. Results showing the thermal hydraulic behaviour of the primary system and the propagation of core degradation are presented for 124 successful calculations, which is the minimum number of required calculations to estimate a 95/95 tolerance limit at the 3rd order of the Wilks formula application. A statistical analysis of the dispersion of results is performed afterwards. Calculation of the influence measures shows a strong correlation between the decay heat and the representative output quantities, which are the mass of hydrogen produced during the oxidation and the height of molten material in the lower head. As the decay heat increases, an increase in the production of hydrogen and the amount of molten material is clearly observed. The correlation is weak for other input uncertain parameters representing physical phenomena, initial and boundary conditions. The influence of the order of the Wilks formula is investigated and it is found that increasing the number of calculations does not significantly change the bounding values or the distribution of results for this particular application.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference45 articles.

1. BEMUSE Phase III Report-Uncertainty and Sensitivity Analysis of the LOFT L2-5 Test, NEA/CSNI/R(2007)4

2. OECD NEA: 2007 https://www.oecd-nea.org/jcms/pl_18442/bemuse-phase-iii-report-uncertainty-and-sensitivity-analysis-of-the-loft-l2-5-test?details=true

3. BEMUSE Phase V Report–Uncertainty and Sensitivity Analysis of a LB-LOCA in ZION Nuclear Power Plant. NEA/CSNI/R(2009)13; OECD NEA: 2009 https://www.oecd-nea.org/jcms/pl_18866/bemuse-phase-v-report-uncertainty-and-sensitivity-analysis-of-a-lb-loca-in-zion-nuclear-power-plant?details=true

4. An Overview of Westinghouse Realistic Large Break LOCA Evaluation Model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3