Design, Control and Testing of a Modular Multilevel Converter with a Single Cell per Arm in Grid-Forming and Grid-Following Operations for Scaled-Down Experimental Platforms

Author:

Girona-Badia JaumeORCID,Gomis-Bellmunt OriolORCID,Lledó-Ponsati TomàsORCID,Capó-Lliteras MaciàORCID,Collados-Rodriguez CarlosORCID,Cutululis Nicolaos AntonioORCID,Saborío-Romano OscarORCID,Montesinos-Miracle DanielORCID,Pagès Marc,Heredero-Peris DanielORCID,Prieto-Araujo EduardoORCID

Abstract

Modular multilevel converters (MMC) can be used in several applications, especially (but not only) in high-voltage direct current (HVDC) and STATCOM. In order to develop experimental scaled-down test benches for lab validation, several projects have developed MMCs with a limited number of cells, but they need to use pulse width modulation (PWM) techniques to achieve acceptable power quality (because nearest level modulation (NLM), common in HVDC applications with hundreds of levels, cannot achieve sufficient power quality unless the number of cells is high enough). The present paper proposes a new concept which is based on designing arms with a single cell. This allows to have the simplest possible converter that maintains the structure of an MMC. While all the inner controllers of large-scale HVDC MMCs are included, the only remarkable difference is that PWM is used and NLM cannot be implemented. As this is also a limitation for other low voltage MMC, the proposed concept is suggested for scaled-down low voltage applications. The paper includes the design and construction of the converter, the definition and implementation of the converter controllers, and the converter testing, with detailed dynamic simulations and an experimental setup.

Funder

FEDER / Ministerio de Ciencia, Innovación y 357 Universidades - Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Hierarchical MPC Applied to an MMC in Grid-Forming Mode: Implementation and Validation in Power Hardware-in-The-Loop;IEEE Transactions on Power Delivery;2023-10

2. Advanced control of eleven level modular converter connected to the power grid via HVDC transmission line;2023 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2023 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM);2023-09-01

3. Impact analysis of energy-based control structures for grid-forming and grid-following MMC on power system dynamics based on eigenproperties indices;International Journal of Electrical Power & Energy Systems;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3