Abstract
With the increasingly customized product requirements of customers, the manufactured products have the characteristics of multi-variety and small-batch production. A high-quality production scheduling scheme can reduce energy consumption, improve production capacity and processing quality of the enterprise. The high-dimensional many-objective green flexible job shop scheduling problem (Ma-OFJSSP) urgently needs to be solved. However, the existing optimization method are difficult to effectively optimize the Ma-OFJSSP. This study proposes a many-objective flexible job shop scheduling model. An optimization method SV-MA is designed to effectively optimize the Ma-OFJSSP model. The SV-MA memetic algorithm combines an improved strength Pareto evolution method (SPEA2) and the variable neighborhood search method. To effectively distinguish the better solutions and increase the selection pressure of the non-dominated solutions, the fitness calculation method based on the shift-based density estimation strategy is adopted. The SV-MA algorithm designs the variable neighborhood strategy which combines with scheduling knowledge. Finally, in the workshop scheduling benchmarks and the machining workshop engineering case, the feasibility and effectiveness of the proposed model and SV-MA algorithm are verified by comparison with other methods. The production scheduling scheme obtained by the proposed model and SV-MA optimization algorithm can improve production efficiency and reduce energy consumption in the production process.
Funder
Ministry of Science and Technology of the People's Republic of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献