Vibration Model of a Power Capacitor Core under Various Harmonic Electrical Excitations

Author:

Li Jinyu,Lei Xiaoyan,Zuo Zhongqiu,Xiong Yi

Abstract

Power capacitors are widely used in power transmission systems. During their operation, an electric force acting on the electrodes of the power capacitors actuates mechanical vibrations and radiates an audible noise. Considering a power capacitor as a general system, the frequency response with the electric force as the input and mechanical vibration as the output have been measured by engineers in recent years and used to evaluate the acoustic and mechanical features of products. Accidentally, it was found that the frequency of the capacitor vibration was not consistent with its excitation due to electro-mechanical coupling. This electro-mechanical coupling had not been considered in previous vibration models of power capacitors. Therefore, a new vibration model of power capacitors was built up in this paper and a so-called multi-frequency vibration characteristic was revealed. A theoretical analysis showed that the electric force and mechanical vibration of the power capacitors were coupled, which resulted in the multi-frequency vibration. The vibration frequency response was measured and the result was consistent with the vibration model proposed in this paper. Once the frequency of the electric force was near half the natural frequency of the power capacitor, a predominant multi-frequency vibration was triggered and the power capacitor was in a superharmonic resonance.

Funder

China Electric Power Research Institute

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference15 articles.

1. Vibration and audible noise of capacitors subjected to nonsinusoidal waveforms

2. IEC/TS 61973 High Voltage Direct Current (HVDC) Substation Audible Noise,2012

3. HVDC Station Audible Noise;Clark,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on Noise Characteristics of Scaled Capacitor Stacks;Lecture Notes in Electrical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3