Innovative Water Supply Network Pressure Management Method—The Establishment and Application of the Intelligent Pressure-Regulating Vehicle

Author:

Gao JinliangORCID,Li KunyiORCID,Wu WenyanORCID,Chen JianxunORCID,Zhang Tiantian,Deng Liqun,Xin Ping

Abstract

The development of many intelligent technologies, such as artificial intelligence and the Internet of Things, has brought new opportunities for water industry intelligence. Based on intelligent pressure regulation technology, this paper built an intelligent management platform, designed an intelligent pressure-regulating device, and combined both to form an intelligent pressure-regulating vehicle (IPRV). The IPRV has the functions of developing a pressure-regulating scheme, equipment selection, pressure reduction potential analysis, etc. It can bring convenience to the field test of the water supply network. In the field test, an intelligent pressure-regulating device was used to obtain the network data in the pilot site called S-cell. After utilizing the intelligent management platform to analyze the measured data, the water usage pattern and pressure reduction potential of the S-cell were obtained, and an optimal pressure-regulating strategy was formulated. The water pressure at the critical node always met the water demand at the critical node during the field test. In addition, no complaints were received from other users. The results show that the IPRV is not only convenient for utility managers to make decisions on building pressure-reducing stations, but also meets user needs, realizing a win–win situation for both users and companies.

Funder

State Key Laboratory of Urban Water Resource and Environmen

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. Cost-Benefit Analysis and Uncertainty Analysis of Water Loss Reduction Measures: Case Study of the Gothenburg Drinking Water Distribution System

2. Simple Beam Model to Estimate Leakage in Longitudinally Cracked Pressurized Pipes

3. Parallel Evolutionary Algorithm for Designing Water Distribution Networks to Minimize Background Leakage

4. Does Pressure Reduction Test Have Significant Effect on Evaluating Pressure Management to Reduce Physical Leakage Amount?;Gao,2015

5. Pressure Management Strategies for Water Loss Reduction in Large-Scale Water Piping Networks: A Review;Adedeji,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Unmanned Aerial Vehicle Intelligent Patrol Inspection in Transmission Line Control and Data Processing;2023 Smart City Challenges & Outcomes for Urban Transformation (SCOUT);2023-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3