Pool Boiling Heat Transfer Performance and Bubble Dynamics from Pin Fin-Modified Surfaces with Geometrical Shape Variation

Author:

Pranoto IndroORCID,Rahman Muhammad AuliaORCID,Mahardhika Pradhana A. P.

Abstract

In this paper, an experimental study investigating the effect of the geometrical shape of the circular and rectangular pin fins on the heat transfer performance and the boiling phenomenon is presented. A pool boiling experiment in the HFE-7100 dielectric working fluid under atmospheric pressure was conducted. Boiling curves and boiling heat transfer coefficients of different test cases were plotted to evaluate the heat transfer performance as well as the captured images of the boiling phenomenon on the test samples. Two quantities, flow resistance and wetted perimeter, were calculated to understand the behaviour of the boiling physics due to variation of fin geometrical shape and, hence, their effect on the heat transfer performance. It was found that the cooling performance of the rectangular pin fins was higher than that of the circular pin fins, despite having a slightly higher flow resistance of 4% and 7%, respectively. This is believed to be the result of the longer wetted perimeter up to 27%, whereby the nucleation site has a higher probability of generating more bubbles in the same boiling surface area. For the tested modified boiling surface with 196 and 144 pin fins, the average heat transfer performances were found to have differences of up to 3.54 and 1.58 times larger, respectively.

Funder

Gadjah Mada University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference22 articles.

1. Kurul, N., and Podowski, M.Z. (1990). International Heat Transfer Conference Digital Library, Begel House Inc.

2. Nucleate boiling enhancements on porous graphite and microporous and macro—Finned copper surfaces nucleate boiling enhancements on porous graphite and microporous and macro—Finned copper surfaces;Heat Transfer. Eng.,2012

3. Giustini, G. (2020). Modelling of boiling flows for nuclear thermal hydraulics applications—A brief review. Invention, 5.

4. Parameter study of boiling model for CFD simulation of multiphase-thermal flow in a pipe;J. Ocean. Eng. Technol.,2020

5. Review of pool boiling enhancement by surface modification;Int. J. Heat Mass Transf.,2021

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3