Predicting the Compressibility Factor of Natural Gas by Using Statistical Modeling and Neural Network

Author:

Ghanem AlaaORCID,Gouda Mohammed F.ORCID,Alharthy Rima D.,Desouky Saad M.

Abstract

Simulating the phase behavior of a reservoir fluid requires the determination of many parameters, such as gas–oil ratio and formation volume factor. The determination of such parameters requires knowledge of the critical properties and compressibility factor (Z factor). There are many techniques to determine the compressibility factor, such as experimental pressure, volume, and temperature (PVT) tests, empirical correlations, and artificial intelligence approaches. In this work, two different models based on statistical regression and multi-layer-feedforward neural network (MLFN) were developed to predict the Z factor of natural gas by utilizing the experimental data of 1079 samples with a wide range of pseudo-reduced pressure (0.12–25.8) and pseudo reduced temperature (1.3–2.4). The statistical regression model was proposed and trained in R using the “rjags” package and Markov chain Monte Carlo simulation, while the multi-layer-feedforward neural network model was postulated and trained using the “neural net” package. The neural network consists of one input layer with two anodes, three hidden layers, and one output layer. The input parameters are the ratio of pseudo-reduced pressure and the pseudo-reduced temperature of the natural hydrocarbon gas, while the output is the Z factor. The proposed statistical and MLFN models showed a positive correlation between the actual and predicted values of the Z factor, with a correlation coefficient of 0.967 and 0.979, respectively. The results from the present study show that the MLFN can lead to accurate and reliable prediction of the natural gas compressibility factor.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3