Functionalization Mechanism of Reduced Graphene Oxide Flakes with BF3·THF and Its Influence on Interaction with Li+ Ions in Lithium-Ion Batteries

Author:

Kaczmarek Łukasz,Balik Magdalena,Warga TomaszORCID,Acznik Ilona,Lota KatarzynaORCID,Miszczak SebastianORCID,Sobczyk-Guzenda AnnaORCID,Kyzioł KarolORCID,Zawadzki PiotrORCID,Wosiak AgnieszkaORCID

Abstract

Doping of graphene and a controlled induction of disturbances in the graphene lattice allows the production of numerous active sites for lithium ions on the surface and edges of graphene nanolayers and improvement of the functionality of the material in lithium-ion batteries (LIBs). This work presents the process of introducing boron and fluorine atoms into the structure of the reduced graphene during hydrothermal reaction with boron fluoride tetrahydrofuran (BF3·THF). The described process is a simple, one-step synthesis with little to no side products. The synthesized materials showed an irregular, porous structure, with an average pore size of 3.44–3.61 nm (total pore volume (BJH)) and a multi-layer structure and a developed specific surface area at the level of 586–660 m2/g (analysis of specific surface Area (BET)). On the external surfaces, the occurrence of irregular particles with a size of 0.5 to 10 µm was observed, most probably the effect of doping the graphene structure and the formation of sp3 hybridization defects. The obtained materials show the ability to store electric charge due to the development of the specific surface area. Based on cyclic voltammetry, the tested material showed a capacity of 450–550 mAh/g (charged up to 2.5 V).

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3