Abstract
Whey protein isolate (WPI) fibrils were prepared using an acid hydrolysis induction process. Carbon nanotubes (CNTs) and carbon nano-onions (CNOs) were made via the catalytic chemical vapor deposition (CVD) of methane. WPI fibril–CNTs and WPI fibril–CNOs were prepared via hydrothermal synthesis at 80 °C. The composites were characterized by SEM, TEM, FTIR, XRD, Raman, and TG analyses. The interplay between WPI fibrils and CNTs and CNOs were studied. The WPI fibrils with CNTs and CNOs formed uniform gels and films. CNTs and CNOs were highly dispersed in the gels. Hydrogels of WPI fibrils with CNTs (or CNOs) could be new materials with applications in medicine or other fields. The CNTs and CNOs shortened the WPI fibrils, which might have important research value for curing fibrosis diseases such as Parkinson’s and Alzheimer’s diseases. The FTIR revealed that CNTs and CNOs both had interactions with WPI fibrils. The XRD analysis suggested that most of the CNTs were wrapped in WPI fibrils, while CNOs were partially wrapped. This helped to increase the biocompatibility and reduce the cytotoxicity of CNTs and CNOs. HR-TEM and Raman spectroscopy studies showed that the graphitization level of CNTs was higher than for CNOs. After hybridization with WPI fibrils, more defects were created in CNTs, but some original defects were dismissed in CNOs. The TG results indicated that a new phase of WPI fibril–CNTs or CNOs was formed.
Funder
Applied Basic Research Program of Shanxi Province
Subject
General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献