Abstract
The presented research shows the possibilities of creating in-line magnetic sensors based on the detection of changes of light propagation parameters, especially polarization, obtained by mixing Fe3O4 nanoparticles with hexadecane (higher alkane) surrounding a biconical optical fiber taper. The fiber optic taper allows to directly influence light parameters inside the taper without the necessity to lead the beam out of the structure. The mixture of hexadecane and Fe3O4 nanoparticles forms a special cladding surrounding a fiber taper which can be controlled by external factors such as the magnetic field. Described studies show changes of transmission (power, loss) and polarization properties like azimuth, and ellipticity, depending on the location of the mixture on sections of tapered optical fiber. The taper was made of a standard single-mode telecommunication fiber, stretched out to a length of 20.0 ± 0.5 mm and the diameter of the tapers is around 15.0 ± 0.3 μm, with the loss lower than 0.5 dB @ 1550 nm. Such a taper causes the beam to leak out of the waist structure and allows the addition of the external beam-controlling cladding material. The presented research can be used to build polarization switches or optical sensor. The results show that it can be a new way to control the propagation parameters of a light beam using tapered optical fiber and magnetic mixture.
Funder
Ministry of Science and Higher Education
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献