A Practical Approach to the Analysis and Optimization of Neural Networks on Embedded Systems

Author:

Merone MarioORCID,Graziosi Alessandro,Lapadula ValerioORCID,Petrosino LorenzoORCID,d’Angelis OnoratoORCID,Vollero LucaORCID

Abstract

The exponential increase in internet data poses several challenges to cloud systems and data centers, such as scalability, power overheads, network load, and data security. To overcome these limitations, research is focusing on the development of edge computing systems, i.e., based on a distributed computing model in which data processing occurs as close as possible to where the data are collected. Edge computing, indeed, mitigates the limitations of cloud computing, implementing artificial intelligence algorithms directly on the embedded devices enabling low latency responses without network overhead or high costs, and improving solution scalability. Today, the hardware improvements of the edge devices make them capable of performing, even if with some constraints, complex computations, such as those required by Deep Neural Networks. Nevertheless, to efficiently implement deep learning algorithms on devices with limited computing power, it is necessary to minimize the production time and to quickly identify, deploy, and, if necessary, optimize the best Neural Network solution. This study focuses on developing a universal method to identify and port the best Neural Network on an edge system, valid regardless of the device, Neural Network, and task typology. The method is based on three steps: a trade-off step to obtain the best Neural Network within different solutions under investigation; an optimization step to find the best configurations of parameters under different acceleration techniques; eventually, an explainability step using local interpretable model-agnostic explanations (LIME), which provides a global approach to quantify the goodness of the classifier decision criteria. We evaluated several MobileNets on the Fudan Shangai-Tech dataset to test the proposed approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Emotion Recognition for Cognitive Edge Computing Using Deep Learning

2. Edge-CoCaCo: Toward Joint Optimization of Computation, Caching, and Communication on Edge Cloud

3. Benchmarking TinyML Systems: Challenges and Direction;Banbury;arXiv,2020

4. Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine;Anguita,2012

5. Drowsy Driving Warning System Based on GS1 Standards with Machine Learning;Moon;Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress),2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3